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Abstract. We consider smooth stochastic programs and develop a discrete-time optimal-control

problem for adaptively selecting sample sizes in a class of algorithms based on sample average

approximations (SAA). The control problem aims to minimize the expected computational cost

to obtain a near-optimal solution of a stochastic program and is solved approximately using dy-

namic programming. The optimal-control problem depends on unknown parameters such as rate

of convergence, computational cost per iteration, and sampling error. Hence, we implement the

approach within a receding-horizon framework where parameters are estimated and the optimal-

control problem is solved repeatedly during the calculations of a SAA algorithm. The resulting

sample-size selection policy consistently produces near-optimal solutions in short computing times

as compared to other plausible policies in several numerical examples.

1 Introduction

Stochastic programs that aim to minimize the expectations of random functions are rarely solvable

by direct application of standard optimization algorithms. The sample average approximations

(SAA) approach is a well-known framework for solving such difficult problems where a standard

optimization algorithm is applied to an approximation of the stochastic program obtained by re-

placing the expectation by its sample average. SAA is intuitive, simple, and has a strong theoretical

foundation; see Chapter 5 of [41] for a summary of results and [20, 45, 19, 1] for examples of ap-

plications. However, the framework suffers from a main difficulty: what is an appropriate sample

size? A large sample size provides good accuracy in SAA, but results in a high computational cost.

A small sample size is computationally inexpensive, but gives poor accuracy as the sample average

only coarsely approximates the expectation. It is often difficult in practice to select a suitable

sample size that balances accuracy and computational cost without extensive trial and error.

There is empirical evidence that a variable sample size during the calculations of SAA may
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reduce the computing time compared to a fixed sample-size policy [42, 13, 12, 2, 34, 29, 3, 26].

This is often caused by the fact that substantial objective function improvements can be achieved

with small sample sizes in the early stages of the calculations. In addition, convergence of iterates

to optimal and stationary solutions can typically only be ensured if the sample size is increased to

infinity, see, e.g., [43]. There is also ample empirical evidence from other fields such as semi-infinite

programming [9, 35], minimax optimization [48, 30], and optimal control [39, 4, 27] that adaptive

precision-adjustment schemes may reduce computing times.

It is extremely difficult for a user to select not only one, but multiple sample sizes that overall

balance computational cost and accuracy. Clearly, the number of possible sample sizes is infinite

and the interaction between different stages of the calculations complicates the matter. This paper

addresses the issue of how to best vary the sample size in SAA so that a near-optimal solution can

be obtain in short computing time. We develop a novel approach to sample-size selection based on

discrete-time optimal control and closed-loop feedback.

While the issue of sample-size selection arises in all applications of SAA, this paper deals with

the specific case of smooth stochastic programs where the sample average problems are approxi-

mately solved by standard nonlinear programming algorithms. Consequently, we assume that the

sample average problems are smooth and their gradients can be computed relatively easily. This

case arises for example in estimation of mixed logit models [2], search theory (see Section 5), and

engineering design [33]. Important models such as two-stage stochastic programs with recourse

[16], conditional Value-at-Risk minimization [31], inventory control problems [47], and complex en-

gineering design problems [34] involve nonsmooth random functions and sample average problems.

However, recent efforts to apply smooth approximations of nonsmooth random functions appear

promising [1, 47]. Hence, the results of this paper may also be applicable in such contexts. We illus-

trate the use of smooth approximations in Section 5. Applications with integer restrictions and/or

functions whose gradients may not exist or may not be easily available are beyond the scope of the

paper; see [44, 37, 14, 6] for an overview of that area of research. We note that stochastic programs

may also be solved by stochastic approximations [7, 18, 23] and stochastic decomposition [10, 15]

under suitable assumptions. However, in this paper we focus on SAA.

Existing sample-size selection policies for SAA aim at increasing the sample size sufficiently

fast such that the algorithmic improvement (eventually) dominates the sampling error leading to

convergence to optimal or stationary solutions [43, 42, 13, 2, 34, 26]. We also find studies of

consistency of SAA estimators defined by variable sample sizes [12].

The issue of determining a computationally efficient sample-size selection policies has received

much less attention than that of asymptotic convergence. The recent paper [26] defines classes

of “optimal sample sizes” that best balance, in some asymptotic sense, sampling error and rate

of convergence of the optimization algorithm used to minimize the sample average. These results

provide guidance how to choose sample sizes, but still require the user to select parameters that
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specify the exact sequence of sample sizes to use. We show empirically in this paper that the recom-

mendations of [26] may be poor and highly sensitive to the selection of parameters. Consequently,

we find a need for sample-size selection policies that do not require hard-to-select user specified

parameters. Such policies become especially important when stochastic programs are solved as

part of decision-support tools operated by personnel not trained in mathematical programming.

In [29], we eliminate essentially all user input and let a solution of an auxiliary nonlinear

program determine the sample size during various stages of the calculations. The objective function

of the nonlinear program is to minimize the computational cost to reach a near-optimal solution.

Typically, the nonlinear program depends on unknown parameters, but computational tests indicate

that even with estimates of these parameters the resulting sample-size selection policy provides

reduction in computing times compared to an alternative policy. We find similar efforts to efficiently

control the precision of function (and gradient) evaluations or other algorithm parameters in the

areas of semi-infinite programming [9], interior-point methods [17], interacting-particle algorithms

[21], and simulated annealing [22].

While we here focus on obtaining a near-optimal solution, [3] deals with how to efficiently

estimate the quality of a given sequence of candidate solutions. The paper provides rules for

selecting variable sample sizes for the estimation at each iteration of the procedure. The rules

are based on heuristically minimizing the computational cost required by the estimation procedure

before a termination criterion is met. The computational effort to generate candidate solutions is

not considered. The procedure requires the solution of the sample average problems to optimality,

which may be computationally costly or, possibly, unattainable in finite computing time in the case

of nonlinear random functions.

In this paper, we view a SAA algorithm for solving a stochastic program as a discrete-time

dynamic system subject to random disturbances due to the unknown sample averages. A simi-

lar perspective is taken in [17] in the context of interior-point methods for solving deterministic

nonlinear programs and in [21] for interacting-particle algorithms. Since SAA with sample average

problems solved by nonlinear programming algorithms represent a substantial departure from those

contexts, we are unable to build on those studies.

We provide control inputs to the discrete-time dynamic system by selecting sample sizes for

each stage of the calculations as well as the duration of each stage. Our goal is to control the system

such that the expected computing time to reach a near-optimal solution of the stochastic program

is minimized. As the system (i.e., the algorithm) is highly complex, we develop a surrogate model

of the behavior of the system that can be used for real-time control of the system. Behavioral

models for algorithms in other areas of optimization are discussed in [25, 38]. The surrogate model

leads to a surrogate discrete-time optimal-control problem that we solve approximately by dynamic

programming.

While the auxiliary nonlinear program for sample-size selection in [29] is deterministic and
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provides no feedback about observed realizations of sample averages and algorithmic improvement,

the surrogate optimal-control problem in the present paper accounts for the inherent uncertainty

in SAA and the possibility of recourse in future stages of the calculations. As the surrogate model

depends on unknown parameters, we approximately solve the optimal-control problem after each

stage of the calculations to utilize the latest estimates of those parameters.

We obtain the surrogate discrete-time optimal-control problem through relatively straight-

forward derivations, make use of approximations, and estimate several unknown parameters. In

spite of this, we show in numerical examples that the sample-size selection policy generated by the

optimal-control problem is consistently better than the asymptotically optimal policy of [26] and

other plausible polices.

Our sample-size selection policy does not include hard-to-select user specified parameters that

may greatly influence computing times. Hence, the policy is well suited for implementation in

automated decision-support tools and for use by other than experts in numerical optimization.

In section 2, we define the stochastic program considered and describe the sample-size selection

problem as a discrete-time optimal-control problem. The optimal-control problem appears to be

unsolvable and Section 3 defines an alternative, surrogate optimal-control problem that is tractable.

The surrogate optimal-control problem depends on unknown parameters that are estimated by

procedures described in Section 4. Section 4 also describes the full algorithm which integrates

the surrogate optimal-control problem and the parameter estimation procedures within a receding-

horizon framework. Section 5 gives a summary of numerical results.

2 Problem Statements

2.1 Stochastic Optimization Problem and Sample Average Approximations

We consider the probability space (Ω,F , IP), with Ω ⊂ IRr and F ⊂ 2Ω being the Borel sigma

algebra, and the random function F : IRd × Ω → IR. Let the expected value function f : IRd → IR

be defined by

f(x) := IE[F (x, ω)], (1)

where IE denotes the expectation with respect to the known probability distribution IP. Moreover,

we define the problem

P : min
x∈X

f(x), (2)

where X ⊂ IRd is a convex compact set. We assume that F (·, ω) is continuous on X for IP-almost

every ω ∈ Ω and that |F (x, ω)| is bounded by an integrable function for all x ∈ X and IP-almost

every ω ∈ Ω. This implies that f(·) is well-defined and continuous on X (see Theorem 7.43 in [41]).

Hence, the optimal value of P, denoted f∗, is defined and finite. We denote the set of optimal
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solutions of P by X∗ and the set of ε-optimal solutions by X∗
ε , i.e., for any ε ≥ 0

X∗
ε := {x ∈ X|f(x)− f∗ ≤ ε}. (3)

For general probability distributions IP, we are unable to compute f(x) exactly. Hence, we

approximate it using the random sample average function fN : IRd → IR, N ∈ IIN := {1, 2, 3, ...},
defined by

fN (x) :=
N∑

j=1

F (x, ωj)/N, (4)

where ω1, ω2, ..., ωN is a sample of size N consisting of independent random vectors with distribution

IP. In fN (x) as well as in other expressions below, we suppress the dependence on the sample in

the notation. Moreover, we denote a random vector and its realization with the same symbol. The

meaning should be clear from the context.

Various sample sizes give rise to a family of (random) approximations of P. Let {PN}N∈IIN be

this family, where, for any N ∈ IIN, the (random) sample average problem PN is defined by

PN : min
x∈X

fN (x). (5)

Since fN (·) is continuous on X almost surely, the minimum value of PN , denoted by f∗N , is defined

and finite almost surely. Let X̂∗
N be the set of optimal solutions of PN .

In this paper, we aim to approximately solve P by means of approximately solving a sequence

of problems of the form PN with varying, well-selected N . We assume that for any N ∈ IIN there

exists a suitable algorithm for solving PN given by an algorithm map AN : X → X. While we state

the sample-size control problem below without further assumptions, we essentially throughout this

paper assume that the algorithm map is linearly convergent as formally stated in Section 3. There

may be many algorithms that obtain linear convergence for a given fN (·). We are motivated by

situations where F (·, ω) is continuously differentiable for IP-almost every ω ∈ Ω. In such situations

the algorithm map may be defined by one iteration of the projected gradient method (see, e.g., p.

66 of [28]) or some other nonlinear programming algorithm applied to PN . We note that [26] also

considers linearly convergent algorithm maps.

While we in this paper focus on linearly convergent algorithm maps, the methodology is, in

principle, also applicable to superlinearly convergent algorithm maps as a linear rate provides a

conservative estimate of the progress of a superlinearly convergent algorithm map. However, it is

beyond the scope of the paper to examine this aspect further.

It is well known that under the stated assumption on F (·, ·) and independent sampling, fN (x)

converges to f(x) uniformly on X, as N →∞, almost surely; see for example Theorem 7.48 in [41].

Now suppose that we apply an algorithm map AN (·) to fN (·) that is convergent in the following

sense: for all N and any sequence {xi}∞i=0 generated by the iteration xi+1 = AN (xi), the sequence

{xi}∞i=0 tends to a point in X̂∗
N almost surely. Then, for any ε > 0, a sufficiently large N and a
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sufficiently large number of iterations of the algorithm map result in a solution in X∗
ε almost surely.

Unfortunately, this simple approach has several drawbacks. First, if ε is relatively close to zero,

both N and the number of iterations may be large resulting in a high computational cost. Second,

since only a single sample is used, it may be difficult to estimate the variability in f∗N and, hence,

to estimate the quality of the obtained solution. Third, in practice, the algorithm map may only

guarantee convergence when starting sufficiently close to X̂∗
N . In such cases, the use of multiple

samples “randomize” the sequence of iterates and therefore may increase the chance to obtain a

good local minimum. This effect is not present when we use a single sample.

As argued above, a variable sample size may in part overcome the first drawback of the simple

approach. Hence, we consider the approximate solution of a sequence of problems {PNk
}∞k=1 with

typically increasing sample sizes Nk. While we could have let the sample for PNk+1
contain the

sample for PNk
, we let PNk+1

be independent of PNk
for all k. This construction addresses the

second and third drawbacks discussed above. Hence, we consider the following stagewise approach

where at stage k an independent sample of size Nk is generated from IP. The sample of a stage

is independent of the samples of previous stages. We find a similar stagewise sampling scheme in

[12]. After the sample generation, nk iterations with the algorithm map ANk
(·) are carried out on

PNk
using the generated sample. This approach is described next in a conceptual algorithm.

Algorithm 1 (Conceptual Algorithm for P).

Data. Optimality tolerance ε > 0; initial solution x1
0 ∈ X.

Step 0. Set stage counter k = 1.

Step 1. Determine number of iterations nk ∈ IIN and sample size Nk ∈ IIN.

Generate an independent sample of size Nk.

Step 2. For i = 0 to nk − 1: Compute xk
i+1 = ANk

(xk
i ) using the sample generated in Step 1.

Step 3. If xk
nk
∈ X∗

ε , then Stop. Else, set xk+1
0 = xk

nk
, replace k by k + 1, and go to Step 1.

In view of the discussion above, it is clear that given a particular stage k and a convergent algorithm

map, there exists an N ′ and n′ such that if Nk ≥ N ′ and nk ≥ n′, then Algorithm 1 stops after the

k-th stage almost surely.

We note that Algorithm 1 resembles the classical batching approach to obtain a lower bound on

the optimal value of a two-stage stochastic program with recourse [20]. In that case, M independent

sample average problems PN with a fixed N are solved to optimality. In the present context, we

do not assume that F (·, ω) is piecewise linear or has any other structure that allows the solution

of PN in finite time. Moreover, we allow a variable sample size Nk and warm-start stages, i.e.,

xk+1
0 = xk

nk
, in an effort to reduce the computing time to obtain a near-optimal solution.
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Clearly, Step 3 of Algorithm 1 is not implementable as X∗
ε is defined in terms of the unknown

f∗ and the uncomputable f(·). We discuss this further in Section 4. Given P and the families

{PN}N∈IIN and {AN (·)}N∈IIN, our goal is to determine an efficient policy for selecting the number of

iterations and the sample size in Step 1 of Algorithm 1. Specifically, we would like to find a policy

that approximately minimizes the expected computational cost required in Algorithm 1 to reach a

near-optimal solution. We refer to this problem as the sample-size control problem and formulate

it as a discrete-time optimal-control problem.

2.2 Sample-Size Control Problem

For any sample of size N ∈ IIN and number of iterations n, let An
N (x) denote the iterate after n

iterations of the algorithm map AN (·) initialized by x. That is, An
N (x) is given by the recursion

A0
N (x) = x and, for any i = 0, 1, 2, ..., n− 1,

Ai+1
N (x) = AN (Ai

N (x)). (6)

We consider the evolution of Algorithm 1 to be a stationary discrete-time dynamic system

governed by the dynamic equation

xk
nk

= Ank
Nk

(xk−1
nk−1

), k = 1, 2, 3, ..., (7)

where xk−1
nk−1

∈ X is the state at the beginning of the k-th stage, uk = (Nk, nk) ∈ IIN× (IIN ∪ {0}) is

the control input for the k-th stage, and x0
n0

= x1
0 is the initial condition. We denote the random

sample of stage k by ω̄k = (ωk
1 , ωk

2 , ..., ωk
Nk

). Clearly, for any k ∈ IIN, xk
nk

is unknown prior to the

realization of the samples ω̄1, ω̄2, ..., ω̄k. Hence, ω̄k is the disturbance induced at the k-th stage.

We define the feasible set of controls U(x) as follows: If x ∈ X∗
ε , then U(x) = {(1, 0)}.

Otherwise, U(x) = IIN × IIN. Let c : IIN × (IIN ∪ {0}) → [0,∞) be the computational cost of

carrying out one stage. Specifically, c(N,n) is the computational cost of carrying out n iterations

of algorithm map AN (·). Also, we set c(1, 0) = 0.

Given an initial solution x1
0 ∈ X, we seek an admissible stationary policy µ : X → IIN×(IIN∪{0})

with µ(xk−1
nk−1

) ∈ U(xk−1
nk−1

) for all xk−1
nk−1

∈ X, k ∈ IIN, that minimizes the total cost function

Jµ(x1
0) := lim sup

s→∞
E

[
s∑

k=1

c(µ(xk−1
nk−1

))

]
(8)

subject to the constraints (7). (In (8) we slightly abuse notation by allowing c(·, ·) to take a

two-dimensional vector as input instead of two scalar values.) Here, E denotes expectation with

respect to the disturbances due to the samples ω̄1, ω̄2, ..., ω̄s. We assume that the cost function

c(·, ·), policy µ(·), and algorithm map AN (·) satisfy sufficient measurability assumptions so that

this expectation is defined.
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For a given initial solution x1
0 ∈ X, we define the sample-size control problem

SSCP : inf
µ

Jµ(x1
0), (9)

where the infimum is over all admissible policies. Conceptually, the solution of SSCP provides an

optimal policy that can be used in Step 1 of Algorithm 1 to determine the next sample size and

number of iterations.

Clearly, there are four major difficulties with solving SSCP: (i) the set of ε-optimal solu-

tions X∗
ε is typically unknown, (ii) the state space X ⊂ IRd is continuous and potentially large-

dimensional, (iii) the dynamic equation (7) can only be evaluated by computational costly calcu-

lations, and (iv) the expectation in (8) cannot generally be evaluated exactly. In the next section,

we present a control scheme based on a surrogate dynamic model, receding-horizon optimization,

and parameter estimation that, at least in parts, overcome these difficulties.

3 Surrogate Sample-Size Control Problem

Instead of attempting to solve SSCP, we construct and approximately solve a surrogate sample-size

control problem. We base the surrogate problem on the asymptotic distributions of the progress

made by the algorithm map given a particular control, which we derive next.

3.1 Asymptotic Distributions of Progress by Algorithm Map

We assume that the algorithm map AN (·) used in Algorithm 1 is uniformly linearly convergent as

made precise in the following assumption.

Assumption 1 There exists a θ ∈ (0, 1) such that

fN (AN (x))− f∗N ≤ θ(fN (x)− f∗N ) a.s. (10)

for all x ∈ X and N ∈ IIN.

When applied to PN , with F (·, ω) being continuously differentiable for IP-almost every ω ∈ Ω,

gradient methods based on feasible directions typically satisfy linear rate of convergence under

standard assumptions, see, e.g., Theorem 1.3.18 in [28]. Assumption 1 requires that there exists a

uniform rate of convergence coefficient that is valid almost surely. This holds, for instance, when

the eigenvalues of the Hessian of fN (x), x ∈ X, N ∈ IIN, are positive and are bounded from above

and away from zero almost surely. We find a similar linear rate of convergence assumption in [26].

Given a sample of size N , we consider the progress towards f∗N after n iterations of the algorithm

map. It follows trivially from Assumption 1 and optimality of f∗N that for any x ∈ X,

f∗N ≤ fN (An
N (x)) ≤ f̄n

N (x) := f∗N + θn(fN (x)− f∗N ) a.s. (11)
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We are unable to derive the distribution of fN (An
N (x)), but will focus on its asymptotic distributions

as well as those of its upper and lower bounds in (11). The derivations rely on the following

assumptions.

Assumption 2 We assume that IE[F (x, ω)2] < ∞ for all x ∈ X.

Assumption 3 There exists a measurable function C : Ω → [0,∞) such that IE[C(ω)2] < ∞ and

|F (x, ω)− F (x′, ω)| ≤ C(ω)‖x− x′‖ (12)

for all x, x′ ∈ X and IP-almost every ω ∈ Ω.

Below we need the following notation. Let Y (x), x ∈ X, denote normal random variables with

mean zero, variance σ2(x) := V ar[F (x, ω)], and covariance Cov[Y (x), Y (x′)] := Cov[F (x, ω), F (x′, ω)]

for any x, x′ ∈ X. We also let ⇒ denote convergence in distribution.

It is well-known that the lower bound in (11) is typically “near” f∗ for large N as stated next.

Proposition 1 [40] Suppose that Assumptions 2 and 3 hold. Then,

N1/2(f∗N − f∗) ⇒ inf
x∈X∗ Y (x), (13)

as N →∞.

Consequently, if there is a unique optimal solution x∗ of P, i.e., X∗ = {x∗}, then the lower bound

f∗N on fN (An
N (x)) (see (11)) is approximately normal with mean f∗ and variance σ2(x∗)/N for

large N .

We now turn our attention to the upper bound on fN (An
N (x)). We present two results. The

first one is an asymptotic result as N → ∞ for a given n. The second one considers the situation

when both N and n increase to infinity. Below we denote a normal random variable with mean m

and variance v by N (m, v).

Theorem 1 Suppose that Assumptions 1, 2, and 3 hold and that there is a unique optimal solution

x∗ of P, i.e., X∗ = {x∗}. Then, for any x ∈ X and n ∈ IIN

N1/2[f̄n
N (x)− f∗ − θn(f(x)− f∗)] ⇒ N (0, vn(x)), (14)

as N →∞, where

vn(x) = (1− θn)2σ2(x∗) + θ2nσ2(x) + 2Cov(F (x∗, ω), F (x, ω))(1− θn)θn. (15)

Proof: By definition

N1/2[f̄n
N (x)− f∗ − θn(f(x)− f∗)] = (1− θn)N1/2(f∗N − f∗) (16)

+ θnN1/2(fN (x)− f(x)).
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Since P has a unique optimal solution, it follows from Theorem 5.7 in [41] that

N1/2

(
fN (x)− f(x)

f∗N − f∗

)
⇒

(
Y (x)
Y (x∗)

)
, (17)

as N →∞. Then, the result follows after application of the continuous mapping theorem, see, e.g.,

Theorem 29.2 in [5].

In view of Theorem 1, we see that the upper bound on fN (An
N (x)) is approximately normal

with mean f∗ + θn(f(x)− f∗) and variance vn(x)/N for large N . If we relax the assumption of a

unique optimal solution of P, we obtain the following asymptotic results as n, N →∞.

Theorem 2 Suppose that Assumptions 1, 2, and 3 hold and that θnN1/2 → a ∈ [0,∞], as n,N →
∞. Then, for any x ∈ X,

θ−n[f̄n
N (x)− f∗] ⇒ f(x)− f∗, if a = ∞; (18)

N1/2[f̄n
N (x)− f∗] ⇒ inf

x′∈X∗ Y (x′) + a(f(x)− f∗), if a ∈ [0,∞); (19)

as N,n →∞.

Proof: We only consider (19) as the other case follows by similar arguments. By definition,

N1/2[f̄n
N (x)− f∗] (20)

= N1/2(f∗N − f∗) + θnN1/2(fN (x)− f(x)) + θnN1/2(f(x)− f∗)− θnN1/2(f∗N − f∗).

The result now follows from Proposition 1, the central limit theorem, and Slutsky’s theorem (see,

e.g., Exercise 25.7 of [5]).

Corollary 1 Suppose that Assumptions 1, 2, and 3 hold and that θnN1/2 → 0, as n,N → ∞.

Then, for any x ∈ X,

N1/2[fN (An
N (x))− f∗] ⇒ inf

x′∈X∗ Y (x′) (21)

as N,n →∞.

Proof: The result follows directly from (11), Proposition 1, and Theorem 2.

In view of Theorem 2, we observe that the upper bound on fN (An
N (x)) is approximately

normally distributed with mean f∗+ θn(f(x)− f∗) and variance σ2(x∗)/N for large n and N when

X∗ = {x∗}. Since vn(x) → σ2(x∗), as n →∞, we find that the last observations is approximately

equivalent to the one after Theorem 1 when n is large. Moreover, Corollary 1 shows that the

lower and upper bounds on fN (An
N (x)), and hence also fN (An

N (x)), have approximately the same

distribution for large n and N when n is sufficiently large relative to N . In the next subsection, we

adopt a conservative approach and use the upper bounds from Theorems 1 and 2 to estimate the

progress of the algorithm map for different controls.
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3.2 Development of Surrogate Sample-Size Control Problem

In this subsection, we model the evolution of the state xk−1
nk−1

using a surrogate dynamic equation

based on the previous subsection and a surrogate state obtained by aggregation. We note that be-

havioral models of algorithmic progress exist for local search algorithms [25] and genetic algorithms

[38]. However, these models appear not directly applicable here.

Suppose that Algorithm 1 has carried out k − 1 stages and has reached Step 1 of the k-th

stage. At this point, we consider the current and future stages l = k, k + 1, k + 2, ..., in an attempt

to determine the control (Nk, nk) for the current stage. We start by considering function values

instead of iterates, which aggregates the state space from d dimensions to one dimension. Theorems

1 and 2 indicate possible models for the evolution of function values in Algorithm 1. If nk and Nk

are large, Theorem 2 states that conditional on xk−1
nk−1

and given a unique optimal solution of P, an

upper bound on fNk
(xk

nk
) is approximately distributed as

N (f∗ + θnk(f(xk−1
nk−1

)− f∗), σ2(x∗)/Nk). (22)

Moreover, if only Nk is large, Theorem 1 states that conditional on xk−1
nk−1

, an upper bound on

fNk
(xk

nk
) is approximately distributed as

N (f∗ + θnk(f(xk−1
nk−1

)− f∗), vnk
/Nk). (23)

We note, however, that if σ(x∗) ≈ σ(xk−1
nk−1

) and Cov(F (x∗, ω), F (xk−1
nk−1

, ω)) ≈ σ(x∗)σ(xk−1
nk−1

), i.e.,

F (x∗, ω) and F (xk−1
nk−1

, ω) are highly correlated, then σ2(x∗) ≈ vnk
. Hence, (22) and (23) are approx-

imately equal in distribution when xk−1
nk−1

is close to x∗. The paragraph after Corollary 1 indicates

that (22) and (23) are also approximately equal in distribution when nk is large. Consequently,

we adopt the simpler expression (22) as we conjecture that for small k, xk−1
nk−1

is far from x∗ but

an efficient policy typically involves a large nk. (This conjecture is supported by our numerical

experiments.) On the other hand, when k is large, xk−1
nk−1

tends to be close to x∗. Hence, (22)

appears to be reasonably accurate in the present context. We have verified empirically that (23) is

not a significantly better approximation of fNk
(xk

nk
) than (22).

Clearly, (22) would not be sufficient for estimating f(xk
nk

), f(xk+1
nk+1

), etc., as knowledge of

f(xl−1
nl−1

) does not specify f(xl
nl

), only fNl
(xl

nl
). We are unable to derive the distribution of f(xk

nk
)

conditional on xk−1
nk−1

and heuristically approximate that distribution by (22) with truncation at f∗

to account for the fundamental relation f(x) ≥ f∗ for all x ∈ X. Hence, we let

N̄ (f∗ + θnk(f(xk−1
nk−1

)− f∗), σ2(x∗)/Nk, f
∗) (24)

be our approximation of the distribution of f(xk
nk

) conditional on xk−1
nk−1

, where N̄ (m, v, t) denotes

a truncated normally distributed random variable with an underlying normal distribution N (m, v)

and lower truncation thresholds t, i.e., the cumulative distribution function Φ̄(ξ) of N̄ (m, v, t) is

11



Φ̄(ξ) = (Φ((ξ −m)/
√

v)−Φ((t−m)/
√

v))/(1−Φ((t−m)/
√

v)), ξ ≥ t, where Φ(·) is the standard

normal cumulative distribution function.

If f(xk−1
nk−1

), f∗, θ, and σ(x∗) had been known at the beginning of the k-th stage, we could use

(24) to estimate f(xk
nk

). Moreover, we could use (24) recursively and estimate f(xl
nl

), l = k +1, k +

2, .... In Section 4, we construct estimation schemes for f∗, θ, and σ(x∗). Since xk−1
nk−1

is known at the

beginning of the k-th stage, we can also estimate f(xk−1
nk−1

) by a sample average at that time. Hence,

we proceed with (24) as the basis for our model of the evolution of f(xl
nl

), l = k, k + 1, k + 2, ...,

in Algorithm 1. Specifically, we define fl, l = k, k + 1, k + 2, ..., to be the surrogate state at the

beginning of the l-th stage, which represents our estimate of f(xl−1
nl−1

). We let pf , p∗, pθ, and pσ be

the estimates of f(xk−1
nk−1

), f∗, θ, and σ(x∗), respectively.

Given the estimates pf , p∗, pθ, pσ and the controls (Nk, nk), (Nk+1, nk+1), (Nk+2, nk+2), ..., we

define the surrogate dynamic equation for the surrogate state by

fl+1 = N̄ (p∗ + pnl
θ (fl − p∗), p2

σ/Nl, p
∗), l = k, k + 1, k + 2, ..., (25)

with initial condition fk = pf . We note that the equality in (25) indicates equality in distribution.

The terminal states of SSCP are defined by X∗
ε , which translates to the following surrogate terminal

states

T := {ξ ∈ IR|ξ − p∗ ≤ ε}. (26)

We define the feasible set of controls R(ξ) for the surrogate problem as follows: If ξ ∈ T , then

R(ξ) := {(1, 0)}. Otherwise, R(ξ) := IIN× IIN.

We now define the surrogate sample-size control problem. Given a stopping tolerance ε > 0

and the estimates pf , p∗, pθ, and pσ at the beginning of stage k, we seek an admissible stationary

policy µ : IR → IIN × (IIN ∪ {0}) with µ(fl) ∈ R(fl) for all fl ∈ IR, l = k, k + 1, k + 2, ..., that

minimizes the total surrogate cost function

Jk,µ(pf , p∗, pθ, pσ, ε) := lim sup
s→∞

E

[
k+s∑

l=k

c(µ(fl))

]
(27)

subject to the constraints (25). Here, E denotes expectation with respect to the disturbances on

stages k, k + 1, ..., k + s given by the truncated normal distribution in (25). Then, we define the

surrogate sample-size control problem

S-SSCPk(pf , p∗, pθ, pσ, ε) : inf
µ

Jk,µ(pf , p∗, pθ, pσ, ε), (28)

where the infimum is over all admissible policies.

We could easily restrict R(ξ) in S-SSCPk. For example, one could impose minimum values on

the sample size and the number of iterations at various stages to ensure that the surrogate dynamic

equation (25) represents the algorithmic progress reasonably accurately. In numerical examples,

we effectively impose such restrictions as part of the solution process as described next.

12



We solve S-SSCPk approximately by discretizing the surrogate state space and the truncated

normal distribution, and then apply the backward recursion algorithm to the resulting dynamic

program. In the numerical examples below, we find it sufficient to consider 10 stages into the

future and to discretize the interval [p∗+ ε, pf +1.96pσ/Nk−1) using 14 points. We only consider 10

possible values of nl in the range zero to max{10, dlog(0.1ε/(pf − p∗))/ log pθe}, where dae denotes

the smallest integer no smaller than a. We observe that the upper end of the range of nl is simply

the larger of 10 and the number of iterations required to reach within 0.1ε of the optimal value in

presence of no uncertainty. We consider 18 possible values of Nl mostly in the range d1.1Nk−1e
and 10Nk−1, but also with two larger values dynamically selected.

The optimal policy found from solving the discretized S-SSCPk provides controls (Nk, nk),

(Nk+1, nk+1), (Nk+2, nk+2), etc. However, we utilize only (Nk, nk) for the k-th stage as our approach

is implemented within a receding-horizon framework with parameter estimation after each stage.

We refer to the resulting policy as the S-SSCP policy. We discuss the parameter estimation and

the full algorithm next.

4 Parameter Estimation and Full Algorithm

4.1 Parameter Estimation

After completing nk iterations with sample size Nk in stage k of Algorithm 1, the iterates {xk
i }nk

i=0

and function values {fNk
(xk

i )}nk
i=0 are known. We use these quantities to update the parameters

pf , p∗, pθ, and pσ.

We estimate σ2(x∗) for stage k + 1 by simply setting it equal to the sample variance at the

last iterate, i.e.,

p2
σ = σ̂2

k+1 :=
1

Nk − 1

Nk∑

j=1

(F (xk
nk

, ωj)− fNk
(xk

nk
))2, (29)

where ω1, ω2, ..., ωNk
is the sample used in stage k.

We adopt the approach in [9] to estimate the rate of convergence coefficient θ, but add an

exponential smoothing step to avoid large changes in the estimate. A (biased) estimate of f∗ is

computed by a weighted average of estimates of f∗Nl
. We let f̂∗k and θ̂k denote the estimates of f∗

and θ at the beginning of the k-th stage, respectively.

Subroutine A (Estimates θ and f∗ at the end of stage k).

Parameters. Exponential smoothing parameter φ ∈ (0, 1] and tolerance εθ > 0.

Data. Previous estimates θ̂k and f̂∗k ; and function values {fNk
(xk

i )}nk
i=0 of stage k.

Step 0. Set θ̂ = θ̂k.

13



Step 1. Estimate minimum value of PNk
:

dk =
1
nk

nk−1∑

i=0

fNk
(xk

nk
)− θ̂nk−ifNk

(xk
i )

1− θ̂nk−i
. (30)

Step 2. Solve the least-square problem

(a∗, b∗) = arg min
a,b

nk∑

i=0

(log(fNk
(xk

i )− dk)− i log a− b)2. (31)

Step 3. If |θ̂ − a∗| < εθ, set θ̂ = a∗ and go to Step 4. Else, set θ̂ = a∗ and go to Step 1.

Step 4. Set θ̂k+1 = φθ̂ + (1− φ)θ̂k.

Step 5. Compute conservative estimate of minimum value of PNk
:

m̂k := min
i=0,1,...,nk−1

fNk
(xk

nk
)− (θ̂k+1)nk−ifNk

(xk
i )

1− (θ̂k+1)nk−i
. (32)

Step 6. Estimate optimal value of P:

f̂∗k+1 :=
Nk∑k
l=1 Nl

m̂k +
∑k−1

l=1 Nl∑k
l=1 Nl

f̂∗k (33)

and Stop.

It follows from Assumption 1 that f∗Nk
≥ (fNk

(xk
nk

)− θnk−ifNk
(xk

i ))/(1− θnk−i) almost surely

for any i = 0, 1, ..., nk − 1. Step 1 in Subroutine A averages these lower bounding estimates with

the current estimate of θ and uses that as an estimate of f∗Nk
. Given the estimate of f∗Nk

, Step

2 computes the rate of convergence coefficient that best fit {fNk
(xk

i )}nk
i=0 in a least-square sense.

We observe that if {fNk
(xk

i )}nk
i=0 is a linearly progressing sequence, then a correct θ is found by

Steps 1-3 of Subroutine A. Those steps were originally proposed in [9] in the context of semi-infinite

optimization.

Step 4 applies exponential smoothing to the estimates of the rate of convergence coefficient to

avoid large fluctuations. Step 5 computes a conservative estimate of f∗Nk
that is merged with the

current estimate of f∗ using weighted averages in Step 6.

At the end of the k-th stage, we set pθ = θ̂k+1, i.e., the estimate of the rate of convergence

coefficient using iterates up to stage k. Typically, we set p∗ = f̂∗k+1, but adjust that if a condition

is satisfied as described in the next subsection.

For all k ∈ IIN, we estimate f(xk
nk

) at the end of the k-th stage by computing the unbiased

estimate fN∗(xk
nk

) using an independent sample of size N∗. We typically set pf = fN∗(xk
nk

) for use

in S-SSCPk+1. However, we deviate from that occasionally as described below.
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In S-SSCPk, the computational cost function c(·, ·) is assumed to be known. In reality, that

may not be the case and we adopt the following simple model of computational cost for one stage

given Nk, nk, and N∗. We set

c(Nk, nk) = w1Nknk + w2N
∗ (34)

where w1, w2 ≥ 0 are parameters updated after the (k− 1)-th stage by setting w1 = t1/(Nk−1nk−1)

and w2 = t2/N
∗, with t1 and t2 being the computing times to carry out the nk−1 iterations and to

compute the estimate fN∗(xk−1
nk−1

) during stage k−1, respectively. An alternative polynomial model

of computational cost based on linear regression is used in [9]. However, we find (34) reasonable in

the present situation as the time required to calculate fN (x) for a given x is linear in N . Hence,

the effort required to apply the algorithm map once tends to be linear in N .

4.2 Full Algorithm

We now present the extension of Algorithm 1 that includes details about policy selection and pa-

rameter estimation.

Algorithm 2 (Implementable Algorithm for P).

Data. Optimality tolerance ε > 0; initial sample size N0 ∈ IIN; validation sample size N∗; default

sample size factor γN > 0; default iteration number γn ∈ IIN; initial estimate of rate of

convergence coefficient θ̂1; initial solution x0
0 ∈ X.

Step 0. Generate an independent sample of size N0, compute fN0(x
0
0) and σ̂1, and set f1 = f̂∗1 =

fN0(x
0
0), pf = f1 + σ̂1/

√
N0, p∗ = f̂∗1 −max{1, f1}, pθ = θ̂1, pσ = σ̂1, k = 1, and x1

0 = x0
0.

Step 1. Determine nk and Nk by solving S-SSCPk(pf , p∗, pθ, pσ, ε).

Step 2. Generate an independent sample of size Nk.

Step 3. For i = 0 to nk − 1: Compute xk
i+1 = ANk

(xk
i ) using the sample from Step 2.

Step 4. Compute σ̂k+1, θ̂k+1, and f̂∗k+1 by (29) and Subroutine A.

Step 5. Generate an independent sample of size N∗ and compute fN∗(xk
nk

).

Step 6. If f̂∗k+1 + ε < fN∗(xk
nk

), set pf = fN∗(xk
nk

), p∗ = f̂∗k+1, pθ = θ̂k+1, and pσ = σ̂k+1. Replace

k by k + 1 and go to Step 1.

Elseif f̂∗k+1 − σ̂k+1/
√∑k

l=1 Nl + ε < fN∗(xk
nk

) + σ̂k+1/
√

N∗, then set pf = fN∗(xk
nk

) +

σ̂k+1/
√

N∗, p∗ = f̂∗k+1 − σ̂k+1/
√∑k

l=1 Nl, pθ = θ̂k+1, and pσ = σ̂k+1. Replace k by k + 1 and

go to Step 1.

Else set Nk+1 = dγNNke and nk+1 = γn. Replace k by k + 1 and go to Step 2.
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Step 0 of Algorithm 2 computes a rudimentary estimate of f∗. If problem specific information is

available, the initial estimate of f∗ may be improved. We note that if f̂∗k+1 + ε ≥ fN∗(xk
nk

), then

S-SSCPk+1(fN∗(xk
nk

), f̂∗k+1, pθ, pσ, ε) returns the policy Nk+1 = 1 and nk+1 = 0 since a surrogate

terminal state is already reached. This may occur if f̂∗k+1 and/or fN∗(xk
nk

) are inaccurately estimates

of f∗ and f(xk
nk

), respectively. In that case, Step 6 of Algorithm 2 attempts to use conservative

estimates of f∗ and f(xk
nk

). If the conservative estimates do not immediately lead to a surrogate

terminal state, they are adopted in S-SSCPk+1(pf , p∗, pθ, pσ, ε). If the conservative estimates still

immediately lead to a surrogate terminal state, xk
nk

is probably (close to) a near-optimal solution

and Algorithm 2 resorts to a default policy.

Even though S-SSCPk aims to obtain a near-optimal solution, such a solution is not guar-

anteed due to inaccurate parameter estimates and other approximations. However, Algorithm 2

is essentially identical to Algorithm 1 except it includes a specific policy for selecting Nk and nk.

Hence, under Assumption 1 and the adaption of a uniform law of large numbers (Theorem 7.48 in

[41]), it follows that given a particular stage k, there exists an N ′ and n′ such that if Nk ≥ N ′ and

nk ≥ n′, then xk
nk

generated by Algorithm 2 is contained in X∗
ε . This fact gives assurance that a

near-optimal solution can be obtained for large nk and Nk.

In practice, all calculations must be terminated after a finite time period, which raises the

question of how to estimate the proximity to optimality for the obtained solutions. We discuss that

topic next.

4.3 Validation Analysis

The proximity to optimality of a solution xk
nk

obtained by Algorithm 2 could be estimated using an

optimality function [32] or a hypothesis test of Karush-Kuhn-Tucker conditions [42]. We develop

a third approach motivated by the optimality gap estimates of [24, 20]. As we see below, this

approach utilizes quantities already computed in Algorithm 2.

Step 5 of Algorithm 2 computes in the k-th stage fN∗(xk
nk

). Under Assumption 2, the central

limit theorem gives that fN∗(xk
nk

) is approximately normally distributed with mean f(xk
nk

) and

variance σ2(xk
nk

)/N∗ for large N∗. Hence, fN∗(xk
nk

) is a probabilistic upper bound on f∗. This

upper bound is identical to those used in [24, 20].

We depart from [24, 20] when constructing a probabilistic lower bound on f∗. If Assumption

1 holds and Subroutine A has constructed {θ̂l}k+1
l=2 and {m̂l}k

l=1 such that 1 > θ̂l ≥ θ for all

l = 2, 3, ..., k + 1, then m̂l ≤ f∗Nl
almost surely for all l = 1, 2, 3, ..., k. Consequently, it follows from

the definition of f̂∗k+1 that

f̂∗k+1 =
1∑k

j=1 Nj

k∑

l=1

Nlm̂l ≤ 1∑k
j=1 Nj

k∑

l=1

Nlf
∗
Nl

a.s. (35)

Since E[f∗N ] ≤ f∗ for all N ∈ IIN, see, e.g., [20], it follows that E[f̂∗k+1] ≤ f∗. Consequently, f̂∗k+1
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is a lower bound on f∗, on average. In the case of a nonconvex problem, Assumption 1 typically

only holds on subsets of X near locally optimal solutions with f∗N replaced by the locally optimal

values. Hence, in practice f̂∗k+1 may only be a probabilistic lower bound on a locally optimal value

in the case of a nonconvex problem.

We now consider the asymptotic distribution of the lower bound on f∗N .

Theorem 3 Suppose that Assumptions 1, 2, and 3 hold and that θnN1/2 → 0, as n,N → ∞.

Then, for any x ∈ X,

N1/2
(

fN (An
N (x))− θnfN (x)

1− θn
− f∗

)
⇒ inf

x′∈X∗ Y (x′) (36)

as N,n →∞.

Proof: Since An
N (x) is suboptimal, it follows that

f∗N ≥ fN (An
N (x))− θnfN (x)

1− θn
≥ f∗N − θnfN (x)

1− θn
a.s. (37)

Hence,

N1/2(f∗N − f∗)

≥ N1/2(fN (An
N (x))− f∗)− θnN1/2(fN (x)− f∗)

1− θn
(38)

≥ N1/2(f∗N − f∗)− θnN1/2(fN (x)− f∗)
1− θn

a.s.

The last expression tends to infx′∈X∗ Y (x′) as n,N → ∞ with θnN1/2 → 0 by Proposition 1,

the central limit theorem, and Slutsky’s theorem (see, e.g., Exercise 25.7 of [5]). This result and

Proposition 1 prove the theorem.

When the sequence {fNk
(xk

i )}nk
i=0 is linearly progressing with rate of progression θ̂k+1, then the

minimization in (32) can be ignored. In this case, we see from Theorem 3 that m̂k is approximately

normally distributed with mean f∗ and variance σ2(x∗)/Nk when Nk is large, nk is large relatively

to Nk, and X∗ = {x∗}. In principle, a central limit theorem for triangular arrays could provide

the asymptotic distribution of f̂∗k+1, as k → ∞. However, we find such a result less useful as the

number of stages before Algorithm 2 finds a near-optimal solution is typically rather small (e.g.,

5-15). Hence, we proceed with a finite k and simply observe that if m̂l is approximately normal for

all stages l = 1, 2, ..., k, then f̂∗k+1 is approximately normally distributed with mean f∗ and variance

σ2(x∗)/
∑k

l=1 Nl. We note that since the asymptotic distribution in (36) is independent of x, the

dependence between the stages induced by the warm starting xl
0 = xl−1

nl−1
is insignificant for large

number of iterations.

Combining the upper and lower bounds on f∗ we obtain that P [f(xk
nk

) − f∗ ≤ ε] is approxi-

mately bounded below by

Φ


 f̂∗k+1 + ε− fN∗(xk

nk
)√

σ̂2
k+1/

∑k
l=1 Nl + σ̂2

k+1/N
∗


 , (39)
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where σ2(x∗) is estimated by σ̂2
k+1. Hence, if (39) is large, then it is likely that xk

nk
∈ X∗

ε . The last

solution of each stage in Algorithm 2 can be validated in this manner.

5 Computational Studies

There are obviously many alternatives to the sample-size policy induced by S-SSCPk in Step 1

of Algorithm 2. In this section we examine some that we believe are practical alternatives to the

S-SSCP policy including the asymptotically optimal policy of the recent paper [26]. Specifically,

we compare the computing time required to obtain a near-optimal solution by Algorithm 2 using

different sample-size selection policies in Step 1. As mentioned in Section 1, stochastic programs

may also be solved by algorithms not based on SAA. However, in this paper we do not compare

across algorithmic frameworks and focus on efficient sample-size selection within SAA when applied

to smooth stochastic programs.

We implement Algorithm 2 with Subroutine A in Matlab Version 7.4 on a laptop computer

with 2.16 GHz processor, 2 GB RAM, and Windows XP operating system. We use one iteration of

the projected gradient method with Armijo step size rule (see, e.g., p. 67 of [28]) as the algorithm

map AN (·). The quadratic direction finding problem in the projected gradient method is solved

using LSSOL [8] as implemented in TOMLAB 7.0 [11].

In all computational tests, we use parameters α = 0.5 and β = 0.8 in Armijo step size rule

(see p. 67 of [28]) as well as exponential smoothing parameter φ = 1/3 and tolerance εθ = 0.0001

in Subroutine A. We use initial sample size N0 = 1000, default sample size factor γN = 1.1, default

iteration number γn = 3, and initial estimate of rate of convergence coefficient θ̂1 = 0.9. Our initial

estimates of w1 and w2, see (34), are 3 and 1, respectively.

5.1 Numerical Examples

We consider the following five of problem instances for our numerical tests. The first three in-

stances are constructed examples of P with known optimal solutions that allow us to examine

different degree of ill-conditioning. The fourth problem instance arises in military and civilian

search and rescue operations. The fifth instance arises in engineering design with multiple per-

formance functions. The last problem instance illustrates that Algorithm 2 may be used even if

F (·, ω) is nonsmooth.

5.1.1 Problem Instances QUAD1, QUAD2, and QUAD3

Problem instances QUAD1, QUAD2, and QUAD3 are defined in terms of

F (x, ω) =
20∑

i=1

ai(xi − biωi)2 (40)
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with bi = 21 − i, i = 1, 2, ..., 20, and ω = (ω1, ω2, ..., ω20)′ being a vector of 20 independent

and [0, 1]-uniformly distributed random variables. We refer to the problem instance with ai = i,

i = 1, 2, ..., 20, by QUAD1, the problem instance with ai = 1 + 199(i − 1)/19, i = 1, 2, ..., 20,

by QUAD2, and ai = 1 + 1999(i − 1)/19, i = 1, 2, ..., 20, by QUAD3. All these instances are

unconstrained and we set X equal to a sufficiently large convex compact subset of IR20 that includes

all relevant solutions. Obviously, QUAD1, QUAD2, and QUAD3 are strictly convex with identical

unique global minimizer x∗ = (x∗1, ..., x∗20)
′, where x∗i = bi/2. The optimal value is

∑20
i=1 aib

2
i /12. We

note that QUAD1, QUAD2, and QUAD3 are increasingly ill-conditioned. Even though solvable

without SAA, we use these simple problem instances to illustrate our approach. For QUAD1,

QUAD2, and QUAD3 we set x0
0 = 0 ∈ IR20 and use relative optimality tolerance 0.001, i.e.,

ε = 0.001p∗ in Algorithm 2.

5.1.2 Problem Instance SEARCH

The next problem instance generalizes a classical problem arising in search and detection applica-

tions. Consider an area of interest divided into d cells. A stationary target is located in one of the

cells. A priori information gives that the probability that the target is in cell i is pi, i = 1, 2, ..., d,

with
∑d

i=1 pi = 1. The goal is to optimally allocate one time unit of search effort such that the prob-

ability of not detecting the target is minimized (see, e.g., p. 5-1 in [46]). We generalize this problem

and consider a random search effectiveness in cell i per time unit and minimize the expected proba-

bility of not detecting the target. We let x = (x1, x2, ..., xd)′ ∈ IRd, with xi representing the number

of time units allocated to cell i, and let ω = (ω1, ω2, ..., ωd)′, with ωi, i = 1, 2, ..., d, being inde-

pendent lognormally distributed random variables (with parameters ξi = 100ui and λi = 0, where

ui ∈ (0, 1) are given data generated by independent sampling from a uniform distribution) repre-

senting the random search effectiveness in cell i. Then, the expected probability of not detecting

the target is f(x) = IE[F (x, ω)], where

F (x, ω) =
d∑

i=1

pie
−ωixi . (41)

The decision variables are constrained by
∑d

i=1 xi = 1 and xi ≥ 0, i = 1, 2, ..., d. We consider

d = 100 cells. This problem instance, referred to as SEARCH, is convex. We observe that the

expectation in the objective function can be computed by (numerically) solving d one-dimensional

integrals. However, our goal is to illustrate Algorithm 2, which is based on SAA, so we do not

pursue that avenue. For this problem instance, we use x0
0 = (1/100, ..., 1/100)′ ∈ IR100 and use

relative optimality tolerance 0.001, i.e., ε = 0.001p∗ in Algorithm 2.

5.1.3 Problem Instance TRUSS

The last problem instance deals with the design of a truss structure with topology given in Figure

1. The truss is subject to a random load L in its mid-span. L is lognormally distributed with
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Figure 1: Design of Truss

mean 100 kN and standard deviation 10 kN. Let Si be the yield stress of member i. Members

1-7 have lognormally distributed yield stresses with means 100, 120, 180, 190, 200, 210, and 220

N/mm2, respectively. Members 1 and 2 have standard deviation 5 N/mm2 and members 3-7

have standard deviations 10 N/mm2. The yield stresses of members 1 and 2 are correlated with

correlation coefficients 0.8. However, their correlation coefficients with the other yield stresses are

0.5. Similarly, the yield stresses of members 3-7 are correlated with correlation coefficients 0.8,

but their correlation coefficients with the yield stresses of members 1 and 2 are 0.5. The load L is

independent of the yield stresses.

The design vector x = (x1, x2, ..., x7)′ ∈ IR7, where xi is the cross-section area (in 1000 mm2)

of member i. The truss fails if any of the members exceed their yield stress and, hence, the

probability of failure is P [
⋃7

i=1{Sixi − L/ζi ≤ 0}], where ζi = 1/(2
√

3) for i = 1, 2, and ζi = 1/
√

3

for i = 3, 4, ..., 7 (see [36] for details). Using the approach in [36], see also [34], we find that this

probability of failure can be approximated with high accuracy by

f(x) = IE[max{ρ, max
i=1,...,7

{1− χ2
8(r

2
i (x, ω))}} (42)

where ρ > 0 is an approximation parameter set equal to 20, χ2
8(·) is the Chi-square cumulative distri-

bution function with 8 degrees of freedom, ω is an eight-dimensional random vector of independent

standard normal random variables obtained from the original random variables (L, S1, ..., S7) using

a Nataf probability transformation, and ri(·, ω) is a smooth distance function. The function (42)

20



is of form (1) and is continuously differentiable under moderate assumptions [34]. However, the

expression inside the brackets in (42) is not continuously differentiable everywhere for IP-almost

every ω ∈ Ω. We overcome this difficulty by smoothing that expression using exponential smooth-

ing with smoothing parameter 107; see [30]. This results in an error in function evaluation due to

smoothing of less than 2 · 10−7 for all x ∈ IR7 and ω ∈ Ω. A similar smoothing approach is used

in [1, 47] for Conditional Value-at-risk minimization. This problem instance illustrates that also

nonsmooth problem instances may be solved approximately by Algorithm 2.

The goal in this truss design problem, denoted TRUSS, is to minimize f(x) subject to
∑7

i=1 xi =

3, xi ≤ 0.5, xi ≥ 0.2, i = 1, 2, ..., 7. We note that this problem instance is not known to be convex.

We use x0
0 = (3/7, ..., 3/7)′ ∈ IR7 and ε = 0.05p∗. In this problem instance, we increase the relative

tolerance as the variability is rather high (σ(x∗)/f∗ ≈ 10).

5.2 Computational Results

We apply Algorithm 2 with different sample-size selection policies to the five problem instances.

The measure of performance of the policies is the time required in Algorithm 2 until (39) exceeds

the threshold 0.95. We do not carry out a rigorous analysis of such sequential tests, but find em-

pirically that the coverage probabilities for Algorithm 2 with this stopping criterion is satisfactory.

Specifically, Algorithm 2 stops after a stage k with an xk
nk

that fails to satisfy f(xk
nk

) − f∗ ≤ ε in

only 1% of 320 independent runs on QUAD1, which is well within the 5% indicated by the threshold

0.95. The stopping criterion yields satisfactory coverage also on the other problem instances and

suffices for our purpose of comparing different policies. In view of this criterion, we select N∗ so

that the variability in fN∗(xk
nk

) would tend not to prevent (39) from exceeding 0.95. That is, we set

N∗ = d(σ̂1Φ−1(0.95)/(ε/2))2e, which is the smallest sample size that ensures that (39) equals 0.95

when fN∗(xk
nk

)− f̂∗k+1 = ε/2 and there is no uncertainty in the lower bound, i.e.,
∑k

l=1 Nl “equals”

infinity.

Table 1 gives average computing times in seconds over 10 independent runs of Algorithm

2, with standard deviations, when applied to QUAD1 (columns 4-5), QUAD2 (columns 6-7), and

QUAD3 (columns 8-9). Each row represents a particular policy for determining (Nk, nk). The third

row gives the times when (Nk, nk) is determined by the S-SSCP policy, rows 4-6 give times for an

“additive policy” where N1 = N∗/1000 and Nk = N1 +(N∗−N1)k/20, k = 2, 3, ..., with nk = 5, 10,

and 20, respectively, rows 7-9 give times for a “multiplicative policy” where N1 = N∗/1000 and

Nk = 1.5k−1N1, k = 2, 3, ..., with nk = 5, 10, and 20, respectively, and rows 10-12 give times for the

same multiplicative policy as the previous rows except that Nk = 2k−1N1, k = 2, 3, .... Rows 13-24

follow policies deduced from the recommendation in [26]. Specifically, from an N1 given in column

3, Nk = 1.1k−1N1, k = 2, 3, ..., for rows 13-18 and Nk = 1.5k−1N1, k = 2, 3, ..., for rows 19-24.

The number of iterations carried out at each stage is determined adaptively: the stage ends when

‖(∇2fNk
(xk

i ))
−1∇fNk

(xk
i )‖ ≤ K/

√
Nk. Column 2 of rows 13-24 gives the K used. The policies of
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Policy QUAD1 QUAD2 QUAD3
Name nk N1 avg. st.dev. avg. st.dev. avg. st.dev.
S-SSCP adaptive adaptive 182 98 240 110 223 98
Additive 5 N∗/1000 242 59 412 84 564 200
Additive 10 N∗/1000 434 213 394 111 611 343
Additive 20 N∗/1000 352 172 365 184 662 485
Mult. 1.5 5 N∗/1000 631 267 1351 1368 962 514
Mult. 1.5 10 N∗/1000 666 379 480 219 589 220
Mult. 1.5 20 N∗/1000 759 460 514 220 889 609
Mult. 2 5 N∗/1000 494 233 3958 3871 997 414
Mult. 2 10 N∗/1000 867 426 1112 879 1192 814
Mult. 2 20 N∗/1000 1080 1310 537 221 948 480
Mult. 1.1 K = 1 10 1434 170 2522 [4] - [0]
Mult. 1.1 K = 1 100 1039 229 2514 [9] - [0]
Mult. 1.1 K = 1 N∗/1000 501 200 1185 746 976 [1]
Mult. 1.1 K = 0.1 10 1521 318 2524 [3] - [0]
Mult. 1.1 K = 0.1 100 1015 323 1567 [3] 2963 [1]
Mult. 1.1 K = 0.1 N∗/1000 974 391 1301 [6] 2502 [3]
Mult. 1.5 K = 1 10 591 245 1690 [9] 3349 [1]
Mult. 1.5 K = 1 100 419 151 1187 [8] 1836 [2]
Mult. 1.5 K = 1 N∗/1000 305 79 1094 [8] 2521 [4]
Mult. 1.5 K = 0.1 10 864 427 2076 [6] 1143 [1]
Mult. 1.5 K = 0.1 100 841 778 1794 [6] 1186 [3]
Mult. 1.5 K = 0.1 N∗/1000 573 514 1925 [4] 2221 [2]

Table 1: Average and standard deviation of computing times (seconds) over ten runs of Algorithm
2 excluding the time of Step 1 when applied to QUAD1, QUAD2, and QUAD3. Averages are only
over runs completed within 3600 seconds. If less than 10 runs finished within that time limit, we
report the number that did finish in brackets.

rows 13-24 are asymptotically optimal in a sense defined in [26]. We note that N∗/1000 is typically

around 600 for QUAD1, QUAD2, and QUAD3, respectively.

In all cases, Nk is set to 3,000,000, if the above policies propose a sample size of larger than

3,000,000. We anticipate that in real-world application of the proposed methodology the computing

time required to approximately solve the surrogate sample-size control problem (Step 1 of Algorithm

2) will be negligible compared to the computing time of Step 3 in Algorithm 2. Hence, we exclude

the time of Step 1 in the computing times reported in Table 1. For the present problem instances,

the time of Step 1 is typically around 2.5 seconds and the number of stages is typically between 5

and 15.

We see from Table 1 that the S-SSCP policy is significantly better than the alternative ones

for all there problem instances. The first additive policy (see row 4 of Table 1) appears to be

reasonably efficient, but it requires roughly twice the computing time of the S-SSCP policy, on

average. Other alternative policies may require as much as an order of magnitude more computing
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Policy SEARCH TRUSS
Name nk N1 avg. st.dev. avg. st.dev.
S-SSCP adaptive adaptive 121 54 1593 512
Additive 5 N∗/1000 134 74 1992 2240
Additive 10 N∗/1000 253 158 2173 1369
Additive 20 N∗/1000 210 120 6875 6280
Mult. 1.5 5 N∗/1000 173 69 2661 2531
Mult. 1.5 10 N∗/1000 204 145 2751 1181
Mult. 1.5 20 N∗/1000 443 392 6756 7507
Mult. 2 5 N∗/1000 122 67 3303 2805
Mult. 2 10 N∗/1000 340 397 4557 4018
Mult. 2 20 N∗/1000 404 389 10056 8098
Fixed 5 N∗/2 560 171 - [0]
Fixed 10 N∗/2 942 353 - [0]
Fixed 25 N∗/2 1138 438 - [0]

Table 2: Average and standard deviation of computing times (seconds) over ten runs of Algorithm
2 excluding the time of Step 1 when applied to SEARCH and TRUSS. Averages are only over runs
completed within 15000 seconds. If less than 10 runs finished within that time limit, we report the
number that did finish in brackets.

time. The alternative policies deduced from the recommendation in [26] (see rows 13-24 in Table

1) perform comparable to the other alternative policies on QUAD1 (but still much worse than the

S-SSCP policy). However, they result in extremely poor computing times for QUAD2 and QUAD3

with many runs not completed within one hour. It appears that the adaptive rule for determining

the number of iterations for each stage in these policies tends to result in “over-solving” each stage.

We also examined a fixed policy with Nk = N∗/2 and nk = 5 for all k on QUAD1 (not reported in

Table 1), but computing times exceeded 15000 seconds for all 10 runs.

In view of the results of Table 1, we see that even on simple problem instances a poor choice

of sample-size selection policy may result in extremely long computing times. Moreover, the rec-

ommendations from [26], which are based on asymptotic analysis of sampling error and algorithmic

progress, may not be helpful in practice. In fact, on the problem instances examined, these rec-

ommendations perform worse than simple additive or multiplicative polices. On the other hand,

the S-SSCP policy appears to be robust and it performs well even on ill-conditioned problems. In

contrast to rigid additive and multiplicative polices, S-SSCP initially recommends many iterations

per stage but reduces the number as the sample size is increased. When the sample size is large and

the surrogate terminal state is almost satisfied, a cautious increase in sample size is recommended.

Table 2 gives similar result as Table 1 but for problem instances SEARCH and TRUSS. Each

row represents a particular policy as described in Table 1 with the addition of three alternative

policies using a fixed sample size Nk = N∗/2 and nk = 5, 10, or 20 for all k, see rows 13-15 of Table

2. We do not examine the policies from [26] due to their poor performance in Table 1. On SEARCH,
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the S-SSCP policy appears to be the fastest, but with averages over only 10 runs we cannot claim

that the advantage over the best alternative policy is statistically significant. We notice, however,

that the alternative policies often have significantly larger standard deviations than that associated

with the S-SSCP policy. Consequently, the user of an alternative policy is exposed to a significant

risk of having a long computing time even with a “good” choice of alternative policy.

On the problem instance TRUSS (see columns 6 and 7 of Table 2) the S-SSCP policy again

outperforms the alternative policies with substantial margins. In this case, we also see that the

alternative policies have significantly larger standard deviations (coefficient of variations of roughly

1) than that of the S-SSCP policy (coefficient of variation of roughly 1/3). Hence, the user of

an alternative policy not only should expect a longer computing time on average as compared

to the S-SSCP policy, but also the possibility of much longer times. We observe that the best

alternative policy for SEARCH (see row 10 of Table 2) is only the fifth best alternative policy for

TRUSS. Hence, as could be expected, a good alternative policy for one problem instance may not

be particularly good for another. Of course, this makes the process of selecting a policy manually

or by trial-and-error rather difficult.

6 Conclusions

We consider the solution of smooth stochastic programs by sample average approximations and

formulate the problem of selecting efficient sample sizes as a discrete-time optimal-control problem

that aims to minimize the expected computing time to reach a near-optimal solution. The optimal-

control problem is intractable, but we approximate it by a surrogate sample-size control problem

using state aggregation and the result of a novel model of algorithmic behavior. The surrogate

sample-size control problem depends on unknown parameters that we estimate as the algorithm

progresses. Hence, we approximately solve the control problem repeatedly within a receding-horizon

framework.

Even with estimates of parameters, the surrogate sample-size control problem provides a policy

for selecting sample sizes and number of iterations that outperforms plausible alternative policies

including policies known to be optimal in some asymptotic sense. The surrogate sample-size control

problem provides a policy that appears to be robust to changing characteristics of problem instances

such as ill-conditioning. In comparison, the alternative policies may result in dramatically varying

computing times. Of course, we do not examine all possible policies in this paper, among which

there is likely to be some that are better than the surrogate sample-size control policy. However,

we illustrate the difficulty a user faces when selecting a policy prior to calculations. We also show

that guidance provided by recommendations in the literature may not be helpful in practice. The

approach derived in this paper eliminates the need for users to select a policy through extensive trial-

and-error or guesswork and, hence, facilitates implementation of stochastic programming algorithms
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in decision-support tools.
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